slogan
副教授
当前位置: 首页 > 师资队伍 > 信息地理系 > 副教授 > 正文
周建宏

  


周建宏,博士,西南大学地科院副教授,重庆江津人。2021年博士毕业于河海大学,先后在美国农业部水文遥感实验室、清华大学地学系和天津大学地科院开展研究工作。以第一作者身份在Water Resources ResearchRemote Sensing of Environment等国际主流期刊发表多篇论文,主持/参与多项国家自然科学基金和国家重点研发计划课题等项目。担任Water Resources ResearchRemote Sensing of EnvironmentGeoscientific Model DevelopmentJournal of Hydrology等国际主流期刊审稿人。

 

研究方向包括:(1)结合多卫星数据的陆面参数化方案改进与数据同化;(2)土壤水分、蒸散发等陆面水文资料的不确定性分析与融合;(3)陆-气耦合强度定量估计和陆-气相互作用解析。

 

一、学习工作经历

2024.12至今,                西南大学地理科学学院,副教授

2023.092024.11      天津大学地球系统科学学院,副研究员

2021.072023.07      清华大学地球系统科学系,博士后/助理研究员

2014.092021.06      河海大学,水文学及水资源,工学博士

2019.012020.01      美国农业部水文遥感实验室,联合培养博士生

2010.092014.07      贵州大学,水文与水资源工程,工学学士

二、主持和参与项目

国家自然科学基金青年基金项目,陆面模型中地表土壤水热耦合关系优化及其对数据同化的影响研究,2023.012025.12,主持

地球系统数值模拟教育部重点实验室(清华大学)开放基金项目,CIESM模式陆气耦合强度偏差诊断及优化,2024.012024.12,主持

天津市自然科学基金青年基金项目,基于多源遥感资料的华北平原陆面水文模型关键水文参数估计和同化研究,2023.102025.09,主持

中国气象局协同创新开发项目,基于LAMB的陆面过程诊断技术研发,2022.072022.12,主持

国家重点研发计划青年科学家项目,基于多源数据融合与深度学习的全球陆-气耦合同化技术研究,2025.012029.12,主研

国家重点研发计划项目课题,陆面数据同化与水文气候模型改进,2018.052023.04,参与

国家重点研发计划项目课题,旱情多尺度预报预测技术,2018.012021.12,参与

国家自然科学基金面上项目,耦合作物模型与水文模型的农业干旱评估方法研究,2018.012021.12,参与

国家自然科学基金面上项目,多源土壤含水量高时空分辨率融合的大范围干旱定量识别方法研究,2016.012019.12,参与

水利部信息中心项目,土壤墒情和径流模拟预测产品开发,2017.012018.12,参与

水利部信息中心项目,基于VIC模型的土壤墒情产品开发,2015.012016.12,参与

三、论文成果

Zhou J., Dong J., Feng H. et al., 2025. Can typical land surface model parameterizations support the expected soil moisture assimilation efficiency? Water Resources Research, Accepted.

Zhou J., Yang K., Dong J. et al., 2025. Mapping global soil moisture and evapotranspiration coupling strength based on a two‐system method and multiple data. Water Resources Research, 61: e2023WR036847.

Zhou J., Yang K., Crow W. et al., 2023. Potential of remote sensing surface temperature- and evapotranspiration-based land-atmosphere coupling metrics for land surface model calibration. Remote Sensing of Environment, 291: 113557.

Zhou J., Crow W., Wu Z. et al., 2022. Improving soil moisture assimilation efficiency via model calibration using SMAP surface soil moisture climatology information. Remote Sensing of Environment, 280: 113161.

Zhou J., Crow W., Wu Z. et al., 2021. A triple collocation-based 2D soil moisture merging methodology considering spatial and temporal nonstationary errors. Remote Sensing of Environment, 263: 112509.

Zhou J., Wu Z., Crow W. et al., 2020. Improving spatial patterns prior to land surface data assimilation via model calibration using SMAP surface soil moisture data. Water Resources Research, 56: e2020WR027770.

Zhou J., Wu Z., He H. et al., 2019. Regional assimilation of in situ observed soil moisture into the VIC model considering spatial variability. Hydrological Sciences Journal, 64(16): 2150-3435.

Wu Z., Zhou J., He H. et al., 2018. An advanced error correction methodology for merging in-situ observed and model-based soil moisture. Journal of Hydrology, 566: 150-163.

Zhang T., Liang Z. Zhou J. et al., 2025. Multi-layer grid-scale soil moisture estimation using spatiotemporal deep learning methods with physical constraints. Journal of Hydrology, 133086.

He Q., Lu H., Yang K., Oki T., Zhou J. et al., 2024. Global optimization of soil texture maps from satellite‐observed soil moisture drydowns and its Implementation in Noah‐MP land surface model. Journal of Advances in Modeling Earth Systems, 16: e2023MS004142.

Tian X., Dong J., Chen X., Zhou J. et al., 2024. County‐level evaluation of large‐scale gridded data sets of irrigated area over China. Journal of Geophysical Research: Atmospheres, 129: 2023JD040333.

Feng H., Wu Z, Dong J., Zhou J. et al., 2023. Transpiration-soil evaporation partitioning determines inter-model differences in soil moisture and evapotranspiration coupling. Remote Sensing of Environment, 298: 113841.s

Ma X., Tian L., Jiang Y., Liang J., Tian J., Zhou J. et al., 2023. Large uncertainties in precipitation exert considerable impact on land surface temperature modeling over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 128: e2022JD037615.

Jiang Y., Yang K., Qi Y., Zhou X., He J., Lu H., Li X., Chen Y., Li X., Zhou B., Mamtimin A., Shao C., Ma X., Tian J., Zhou J., 2023. TPHiPr: a long-term (1979–2020) high-accuracy precipitation dataset (1=30°, daily) for the Third Pole region based on high-resolution atmospheric modeling and dense observations. Earth System Science Data, 15: 621-638.

Tian J., Lu H., Yang K., Qin J., Zhao L., Zhou J. et al., 2023. Quick estimation of parameters for the land surface data assimilation system and its influence based on the extended Kalman filter and automatic differentiation. Science China Earth Sciences, 66(11): 2546-2562.

Yang K., Chen Y., La Z., Zhan C., Ling X., Zhou X., Jiang Y., Yao X., Lu H., Ma X., Ouyang L., Pan W., Ren Y., Shao C., Tian J., Yang H., Yue S., Zhang K., Zhao D., Zhou J. et al., 2023. Cross-sectional rainfall observation on the central-western Tibetan Plateau in the warm season: System design and preliminary results. Science China Earth Sciences, 66(5): 1015-1030.

Tian J., Lu H., Yang K., Qin J., Zhao L., Jiang Y., Shi P., Ma X., Zhou J., 2023. Improving surface soil moisture estimation through assimilating satellite land surface temperature with a linear SM-LST relationship. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16: 7777-7790.

Wu Z., Feng H., He H., Zhou J. et al., 2021. Evaluation of soil moisture climatology and anomaly components derived from ERA5-Land and GLDAS-2.1 in China. Water Resources Management, 35: 629-643.

Xu Z., Wu Z., He H., Wu X., Zhou J. et al., 2019. Evaluating the accuracy of MSWEP V2.1 and its performance for drought monitoring over mainland China. Atmospheric Research, 226: 17-3.

Wu Z., Xu Z., Wang F., He H., Zhou J. et al., 2018. Hydrologic evaluation of multi-source satellite precipitation products for the Upper Huaihe River Basin, China. Remote Sensing, 10(6): 840.

四、奖励和荣誉

2022,河海大学优秀博士学位论文

2014,贵州省三好学生、贵州大学立志成才十佳大学生

2024,天津大学综合运动会教工组100米第一

20222023,清华大学羽毛球团体赛乙组第四、教工运动会100米乙组第三

2016,河海大学研究生足球赛团体第二

20112014,贵州大学校运会100/200米第三(3次)

五、联系方式

通讯地址:重庆市北碚区天生路2号西南大学地理科学学院

电子邮箱:zhoujianhong@swu.edu.cn; zhoujh709481743@126.com

ResearchGate: https://www.researchgate.net/profile/Jianhong-Zhou-5